理解您的基因:生命藍圖 (Blueprint of Life)

The table of contents

什麼是基因?

基因 是DNA的特定片段,對各種細胞功能至關重要。它們是遺傳的基本單位,決定了我們許多特徵和性狀。

DNA (去氧核糖核酸)

儲存基因資訊


其結構為雙股螺旋,由四種含氮鹼基組成:腺嘌呤(A)、鳥糞嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。這些鹼基按特定方式配對(A-T 和 G-C)

染色體(Chromosome)

由DNA和蛋白質組成的線狀結構

人類有23對染色體,每個細胞中總共擁有46條染色體

細胞

生命的基本單位

包含細胞核,其中儲存著由DNA所構成的染色體

大部分的細胞(除卵子和精子等特殊細胞外)都包含完整的染色體

基因是如何儲存和傳遞資訊的?

基因資訊的儲存

基因資訊儲存在DNA的序列中,並分組成基因。這些基因提供製造蛋白質的指令,而蛋白質對細胞的結構功能至關重要。

在細胞分裂過程中,DNA會進行複製,確保基因資訊準確地傳遞給子細胞

基因資訊的傳遞

遺傳
父母通過基因將特徵傳遞給後代。每個基因有不同的版本,稱為等位基因,這些等位基因相互作用,決定像眼睛顏色或血型等特徵

基因表達
基因表達是基因被啟動或關閉以產生蛋白質的過程。這對於細胞分化和整體生物體的發展至關重要。

基因變異:讓每個人獨特

基因變異是DNA序列中的差異,這些差異使每個人都獨一無二。這些變異主要通過突變產生,並在多樣性、進化和遺傳特徵中發揮著關鍵作用。

突變

突變是DNA序列的變化,是基因變異的主要驅動因素。突變發生的原因包括:

生殖系突變 (Germline Mutations)

生殖系突變是指發生在精子卵子細胞中的突變,並傳遞給後代。這些突變影響後代身體的每一個細胞,對於演化和遺傳性疾病至關重要。

與限制於身體的體細胞突變不同,生殖系突變是跨代遺傳多樣性的基礎。它們對眼睛顏色、 疾病易感性等特徵有影響,而這些突變中的錯誤可能導致遺傳性疾病

這些機制所塑造的基因變異使得除了同卵雙胞胎之外,沒有兩個人擁有完全相同的DNA。

References
  1. Nature news. https://www.nature.com/scitable/topicpage/inheritance-of-traits-by-offspring-follows-predictable-6524925/
  2. Loewe, L. (2008) Genetic mutation. Nature Education 1(1):113
  3. Stallard, T. (2023) Rare disease care across asia pacific, Sandpiper.
  4. Hlawulani (2019) New Scientific Paper confirms 300 million people living with a rare disease worldwide, Rare Diseases International.
  5. Pesheva, E. (2023) Researchers able to determine the effects of genes and environment in 560 common conditions, Harvard Gazette.
  6. Hanany, M., Rivolta, C., & Sharon, D. (2020). Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proceedings of the National Academy of Sciences, 117(5), 2710–2716. https://doi.org/10.1073/pnas.1913179117
  7. Abdul, Q. A., Yu, B. P., Chung, H. Y., Jung, H. A., & Choi, J. S. (2017). Epigenetic modifications of gene expression by lifestyle and environment. Archives of Pharmacal Research, 40(11), 1219–1237. https://doi.org/10.1007/s12272-017-0973-3
  8. Alegría-Torres, J. A., Baccarelli, A., & Bollati, V. (2011). Epigenetics and Lifestyle. Epigenomics, 3(3), 267–277. https://doi.org/10.2217/epi.11.22
  9. CDC. (2025, January 31). Epigenetics, Health, and Disease. Genomics and Your Health. https://www.cdc.gov/genomics-and-health/epigenetics/index.html
  10. Advantages of NGS Over Other Molecular Methods. (2020). Illumina.com. https://sapac.illumina.com/science/technology/next-generation-sequencing/beginners/advantages.html
  11. UF scientists test mouthwash method of collecting DNA – UF Health. (2023). Ufhealth.org. https://ufhealth.org/news/2002/uf-scientists-test-mouthwash-method-collecting-dna
  12. Zayats, T., Young, T. L., Mackey, D. A., Malecaze, F., Calvas, P., & Guggenheim, J. A. (2009). Quality of DNA Extracted from Mouthwashes. PLoS ONE, 4(7). https://doi.org/10.1371/journal.pone.0006165
  13. Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A., & Gilissen, C. (2015). Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Human Mutation, 36(8), 815–822. https://doi.org/10.1002/humu.22813
  14. Zhao, Y., Fang, L. T., Shen, T., Choudhari, S., Talsania, K., Chen, X., Shetty, J., Kriga, Y., Tran, B., Zhu, B., Chen, Z., Chen, W., Wang, C., Jaeger, E., Meerzaman, D., Lu, C., Idler, K., Ren, L., Zheng, Y., & Shi, L. (2021). Whole genome and exome sequencing reference datasets from a multi-center and cross-platform benchmark study. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-01077-5
  15. Barbitoff, Y. A., Polev, D. E., Glotov, A. S., Serebryakova, E. A., Shcherbakova, I. V., Kiselev, A. M., Kostareva, A. A., Glotov, O. S., & Predeus, A. V. (2020). Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59026-y
The table of contents