基因對健康與潛能的影響

基因與健康的關聯

基因在健康結果中扮演著至關重要的角色,影響著疾病風險、治療選擇以及預防策略。根據一項涉及560種常見病症的研究,約40%的疾病與基因有關3

目前已知有7,000種類的罕見疾病,其中超過80%是遺傳性,且其中70%的疾病在兒童期發病4。在亞太地區,罕見疾病的患病率相當高,約有2.58億人5 受到影響,其中一半是兒童

基因攜帶者 (Carriers)

基因攜帶者 (genetic carrier) 是指擁有一個正常基因一個突變基因的個體,這通常與常染色體隱性遺傳或性聯遺傳疾病有關。攜帶者通常無表現出該疾病的症狀,但可以將突變基因傳遞給後代。

許多人是基因突變的攜帶者,卻未意識到。例如,全球約36%的人口(27億人)是至少一種常染色體隱性遺傳性視網膜疾病的健康攜帶者6

如果雙親都是同一疾病的攜帶者,則每個孩子有25%的機會遺傳兩個無效基因拷貝並表現出該疾病,50%的機會成為與父母相同的攜帶者,以及25%的機會遺傳兩個有效基因拷貝,既不會受影響也不會成為攜帶者。

生活方式與表觀遺傳學 (Epigenetics):環境如何塑造基因

表觀遺傳學 (Epigenetics) 是研究環境因素(包括生活方式選擇)如何影響基因表達而不改變DNA序列本身的學科。這一領域顯示,飲食, 運動, 壓力及其他習慣可以通過改變表觀遺傳標記,如DNA甲基化和組蛋白修飾,顯著影響健康結果。

通過理解生活方式選擇如何影響表觀遺傳學,個體可以做出明智的決策來改善健康結果並減少基因風險。

References
  1. Nature news. https://www.nature.com/scitable/topicpage/inheritance-of-traits-by-offspring-follows-predictable-6524925/
  2. Loewe, L. (2008) Genetic mutation. Nature Education 1(1):113
  3. Stallard, T. (2023) Rare disease care across asia pacific, Sandpiper.
  4. Hlawulani (2019) New Scientific Paper confirms 300 million people living with a rare disease worldwide, Rare Diseases International.
  5. Pesheva, E. (2023) Researchers able to determine the effects of genes and environment in 560 common conditions, Harvard Gazette.
  6. Hanany, M., Rivolta, C., & Sharon, D. (2020). Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proceedings of the National Academy of Sciences, 117(5), 2710–2716. https://doi.org/10.1073/pnas.1913179117
  7. Abdul, Q. A., Yu, B. P., Chung, H. Y., Jung, H. A., & Choi, J. S. (2017). Epigenetic modifications of gene expression by lifestyle and environment. Archives of Pharmacal Research, 40(11), 1219–1237. https://doi.org/10.1007/s12272-017-0973-3
  8. Alegría-Torres, J. A., Baccarelli, A., & Bollati, V. (2011). Epigenetics and Lifestyle. Epigenomics, 3(3), 267–277. https://doi.org/10.2217/epi.11.22
  9. CDC. (2025, January 31). Epigenetics, Health, and Disease. Genomics and Your Health. https://www.cdc.gov/genomics-and-health/epigenetics/index.html
  10. Advantages of NGS Over Other Molecular Methods. (2020). Illumina.com. https://sapac.illumina.com/science/technology/next-generation-sequencing/beginners/advantages.html
  11. UF scientists test mouthwash method of collecting DNA – UF Health. (2023). Ufhealth.org. https://ufhealth.org/news/2002/uf-scientists-test-mouthwash-method-collecting-dna
  12. Zayats, T., Young, T. L., Mackey, D. A., Malecaze, F., Calvas, P., & Guggenheim, J. A. (2009). Quality of DNA Extracted from Mouthwashes. PLoS ONE, 4(7). https://doi.org/10.1371/journal.pone.0006165
  13. Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A., & Gilissen, C. (2015). Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Human Mutation, 36(8), 815–822. https://doi.org/10.1002/humu.22813
  14. Zhao, Y., Fang, L. T., Shen, T., Choudhari, S., Talsania, K., Chen, X., Shetty, J., Kriga, Y., Tran, B., Zhu, B., Chen, Z., Chen, W., Wang, C., Jaeger, E., Meerzaman, D., Lu, C., Idler, K., Ren, L., Zheng, Y., & Shi, L. (2021). Whole genome and exome sequencing reference datasets from a multi-center and cross-platform benchmark study. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-01077-5
  15. Barbitoff, Y. A., Polev, D. E., Glotov, A. S., Serebryakova, E. A., Shcherbakova, I. V., Kiselev, A. M., Kostareva, A. A., Glotov, O. S., & Predeus, A. V. (2020). Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59026-y