探索基因如何塑造你的健康與體質

基因與健康的關聯

基因對於健康扮演著至關重要的角色,影響著疾病風險、治療選擇以及預防策略。根據一個基於560種常見病症的研究,發現約40%的疾病與基因有關3

目前已知約7,000種的罕見疾病,其中超過80%是遺傳性,且其中70%的疾病會在兒童期發病4。在亞太地區,罕見疾病的患病率相當高,約有2.58億人5 受到影響,其中一半是兒童

帶因者 (Carriers)

帶因者 (genetic carrier) 是指擁有一個正常基因一個突變基因的個體,這通常與體染色體隱性遺傳或性聯遺傳疾病有關。帶因者通常不會表現出該疾病的症狀,但可能將突變基因傳遞給後代。

許多人在不知情的情況下攜帶遺傳基因變異。全球約36%的人口(約27億人)是健康的帶因者,體內至少帶有一項可能導致體染色體隱性遺傳性視網膜疾病的基因變異6

以體染色體隱性疾病為例,如果雙親都是同一疾病的帶因者,則每個孩子有25%的機會遺傳兩個隱性突變基因並表現出該疾病,50%的機會成為與父母相同的帶因者,以及25%的機會遺傳兩個正常基因,既不會受影響也不會成為攜帶者。

生活方式與表觀遺傳學 (Epigenetics):環境如何形塑基因

表觀遺傳學 (Epigenetics) 是研究環境與生活習慣如何「打開」或「關閉」基因的一門科學,這些變化不會改變DNA本身,卻會影響基因的運作方式。研究發現,飲食、運動、壓力管理等習慣,會透過像是DNA甲基化、組織蛋白修飾等方式,直接影響健康結果。

在基因檢測後,可以做出更有個人化的健康促進方案,透過生活方式影響表觀遺傳,來改善健康狀況並降低疾病風險。

參考資料
  1. Nature news. https://www.nature.com/scitable/topicpage/inheritance-of-traits-by-offspring-follows-predictable-6524925/
  2. Loewe, L. (2008) Genetic mutation. Nature Education 1(1):113
  3. Stallard, T. (2023) Rare disease care across asia pacific, Sandpiper.
  4. Hlawulani (2019) New Scientific Paper confirms 300 million people living with a rare disease worldwide, Rare Diseases International.
  5. Pesheva, E. (2023) Researchers able to determine the effects of genes and environment in 560 common conditions, Harvard Gazette.
  6. Hanany, M., Rivolta, C., & Sharon, D. (2020). Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proceedings of the National Academy of Sciences, 117(5), 2710–2716.
  7. Abdul, Q. A., Yu, B. P., Chung, H. Y., Jung, H. A., & Choi, J. S. (2017). Epigenetic modifications of gene expression by lifestyle and environment. Archives of Pharmacal Research, 40(11), 1219–1237. https://doi.org/10.1007/s12272-017-0973-3
  8. Alegría-Torres, J. A., Baccarelli, A., & Bollati, V. (2011). Epigenetics and Lifestyle. Epigenomics, 3(3), 267–277.
  9. CDC. (2025, January 31). Epigenetics, Health, and Disease. Genomics and Your Health. https://www.cdc.gov/genomics-and-health/epigenetics/index.html
  10. Advantages of NGS Over Other Molecular Methods. (2020). Illumina.com. https://sapac.illumina.com/science/technology/next-generation-sequencing/beginners/advantages.html
  11. UF scientists test mouthwash method of collecting DNA – UF Health. (2023). Ufhealth.org. https://ufhealth.org/news/2002/uf-scientists-test-mouthwash-method-collecting-dna
  12. Zayats, T., Young, T. L., Mackey, D. A., Malecaze, F., Calvas, P., & Guggenheim, J. A. (2009). Quality of DNA Extracted from Mouthwashes. PLoS ONE, 4(7). https://doi.org/10.1371/journal.pone.0006165
  13. Lelieveld, S. H., Spielmann, M., Mundlos, S., Veltman, J. A., & Gilissen, C. (2015). Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Human Mutation, 36(8), 815–822.
  14. Zhao, Y., Fang, L. T., Shen, T., Choudhari, S., Talsania, K., Chen, X., Shetty, J., Kriga, Y., Tran, B., Zhu, B., Chen, Z., Chen, W., Wang, C., Jaeger, E., Meerzaman, D., Lu, C., Idler, K., Ren, L., Zheng, Y., & Shi, L. (2021). Whole genome and exome sequencing reference datasets from a multi-center and cross-platform benchmark study. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-01077-5
  15. Barbitoff, Y. A., Polev, D. E., Glotov, A. S., Serebryakova, E. A., Shcherbakova, I. V., Kiselev, A. M., Kostareva, A. A., Glotov, O. S., & Predeus, A. V. (2020). Systematic dissection of biases in whole-exome and whole-genome sequencing reveals major determinants of coding sequence coverage. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59026-y